
Proceedings Paper
Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injectionFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine’s effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.
Paper Details
Date Published: 10 March 2015
PDF: 6 pages
Proc. SPIE 9305, Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics II, 93050Z (10 March 2015); doi: 10.1117/12.2080462
Published in SPIE Proceedings Vol. 9305:
Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics II
Henry Hirschberg M.D.; E. Duco Jansen; Samarendra K. Mohanty; Nitish V. Thakor; Qingming Luo; Steen J. Madsen, Editor(s)
PDF: 6 pages
Proc. SPIE 9305, Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics II, 93050Z (10 March 2015); doi: 10.1117/12.2080462
Show Author Affiliations
Wei Chen, Stony Brook Univ. (United States)
Kicheon Park, Stony Brook Univ. (United States)
Jeonghun Choi, Stony Brook Univ. (United States)
Kicheon Park, Stony Brook Univ. (United States)
Jeonghun Choi, Stony Brook Univ. (United States)
Published in SPIE Proceedings Vol. 9305:
Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics II
Henry Hirschberg M.D.; E. Duco Jansen; Samarendra K. Mohanty; Nitish V. Thakor; Qingming Luo; Steen J. Madsen, Editor(s)
© SPIE. Terms of Use
