
Proceedings Paper
Centimeter-scale MEMS scanning mirrors for high power laser applicationFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental
advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for
biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the
development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test
of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser
applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full
substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4
wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification
applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an
optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive
high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric
coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without
damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing
advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in
lighting applications such as automotive laser headlights.
Paper Details
Date Published: 27 February 2015
PDF: 16 pages
Proc. SPIE 9375, MOEMS and Miniaturized Systems XIV, 937509 (27 February 2015); doi: 10.1117/12.2079600
Published in SPIE Proceedings Vol. 9375:
MOEMS and Miniaturized Systems XIV
Wibool Piyawattanametha; Yong-Hwa Park, Editor(s)
PDF: 16 pages
Proc. SPIE 9375, MOEMS and Miniaturized Systems XIV, 937509 (27 February 2015); doi: 10.1117/12.2079600
Show Author Affiliations
F. Senger, Fraunhofer-Institut für Siliziumtechnologie (Germany)
U. Hofmann, Fraunhofer-Institut für Siliziumtechnologie (Germany)
Thomas von Wantoch, Fraunhofer-Institut für Siliziumtechnologie (Germany)
C. Mallas, Fraunhofer-Institut für Siliziumtechnologie (Germany)
J. Janes, Fraunhofer-Institut für Siliziumtechnologie (Germany)
W. Benecke, Fraunhofer-Institut für Siliziumtechnologie (Germany)
U. Hofmann, Fraunhofer-Institut für Siliziumtechnologie (Germany)
Thomas von Wantoch, Fraunhofer-Institut für Siliziumtechnologie (Germany)
C. Mallas, Fraunhofer-Institut für Siliziumtechnologie (Germany)
J. Janes, Fraunhofer-Institut für Siliziumtechnologie (Germany)
W. Benecke, Fraunhofer-Institut für Siliziumtechnologie (Germany)
Patrick Herwig, Fraunhofer-Institut für Werkstoffphysik und Schichtechnologie (Germany)
P. Gawlitza, Fraunhofer-Institut für Werkstoffphysik und Schichtechnologie (Germany)
Moises A. Ortega Delgado, Fraunhofer IWS Dresden (Germany)
C. Grune, Fraunhofer-Institut für Werkstoffphysik und Schichtechnologie (Germany)
J. Hannweber, Fraunhofer-Institut für Werkstoffphysik und Schichtechnologie (Germany)
A. Wetzig, Fraunhofer-Institut für Werkstoffphysik und Schichtechnologie (Germany)
P. Gawlitza, Fraunhofer-Institut für Werkstoffphysik und Schichtechnologie (Germany)
Moises A. Ortega Delgado, Fraunhofer IWS Dresden (Germany)
C. Grune, Fraunhofer-Institut für Werkstoffphysik und Schichtechnologie (Germany)
J. Hannweber, Fraunhofer-Institut für Werkstoffphysik und Schichtechnologie (Germany)
A. Wetzig, Fraunhofer-Institut für Werkstoffphysik und Schichtechnologie (Germany)
Published in SPIE Proceedings Vol. 9375:
MOEMS and Miniaturized Systems XIV
Wibool Piyawattanametha; Yong-Hwa Park, Editor(s)
© SPIE. Terms of Use
