Share Email Print

Proceedings Paper

Demonstration of depth-resolved wavefront sensing using a swept-source coherence-gated Shack-Hartmann wavefront sensor
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this report we demonstrate results of measuring wavefront aberrations from different depths in a fabricated phantom using a coherence-gated Shack-Hartman wavefront sensing technique (CG-SH/WFS). The SH/WFS is equipped with a Mach-Zehnder interferometer and the coherence gate operates on principles of swept source (SS) interferometry. The CG-SH/WFS is able to differentiate wavefront signals from different depths separated by a depth resolution of 7.1 micron. The CG-SH/WFS delivers a similar SH spot pattern as that provided by a conventional SH/WFS. Due to the coherence gate, the sensor is capable of eliminating stray reflections. Hereby we present the results of measuring depth-resolved wavefront aberrations. The method is robust and all depth-resolved aberrations are recorded simultaneously without any mechanical movement. This technique has the potential of providing depth resolved correction in adaptive optics assisted ophthalmology imaging and in nonlinear microscopy.

Paper Details

Date Published: 2 March 2015
PDF: 5 pages
Proc. SPIE 9312, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX, 93121R (2 March 2015); doi: 10.1117/12.2079253
Show Author Affiliations
Jingyu Wang, Univ. of Kent (United Kingdom)
Adrian Gh. Podoleanu, Univ. of Kent (United Kingdom)

Published in SPIE Proceedings Vol. 9312:
Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX
James G. Fujimoto; Joseph A. Izatt; Valery V. Tuchin, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?