
Proceedings Paper
Key technologies for energy and spectral efficient flexible optical networksFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
In future optical networks, versatile functionalities will be required for the optical network subsystems to fully utilize the spectral resources with low energy consumption. The key technologies are the spectral efficient MUX/DEMUX technique and flexible control of optical channels with high frequency granularity. An orthogonal frequency division multiplexing (OFDM) and Nyquist wavelength division multiplexing (N-WDM) are the most promising candidates of spectral efficient multiplexing techniques, and all-optical (AO) processing is expected to reduce the energy consumption. In an AO-OFDM systems, discrete Fourier transform (DFT) and inverse DFT (IDFT) are performed in optical domain by specially designed arrayed waveguide gratings (AWGs). In our experiment, 12.5 GHz spaced AO-OFDM system has been successfully demonstrated with no guard interval. In N-WDM systems, the Nyquist signal is generated by using carrier-suppressed return-to-zero (CS-RZ) signal and optical Nyquist filtering, which is achieved with two flat-top AWGs and optical interleaver, and the 25 Gbaud signals are successfully multiplexed in the experiment. Although both AO-OFDM and N-WDM can achieve the highest spectral efficiency, N-WDM is more suitable for flexible optical networks. This is because the N-WDM channels have less spectral overlap with the other channels than AO-OFDM, owing to its rectangular shaped compact spectrum. Therefore, N-WDM channel can be easily multiplexed and demultiplexed by optical filters. At an optical network node, channel defragmentation is indispensable technology to flexibly control the optical channels. We have experimentally demonstrated a format independent optical channel defragmentation with N-WDM signal. We believe these technologies are promising for future flexible optical networks.
Paper Details
Date Published: 7 February 2015
PDF: 8 pages
Proc. SPIE 9389, Next-Generation Optical Communication: Components, Sub-Systems, and Systems IV, 938903 (7 February 2015); doi: 10.1117/12.2079019
Published in SPIE Proceedings Vol. 9389:
Next-Generation Optical Communication: Components, Sub-Systems, and Systems IV
Guifang Li; Xiang Zhou, Editor(s)
PDF: 8 pages
Proc. SPIE 9389, Next-Generation Optical Communication: Components, Sub-Systems, and Systems IV, 938903 (7 February 2015); doi: 10.1117/12.2079019
Show Author Affiliations
Satoshi Shimizu, National Institute of Information and Communications Technology (Japan)
Gabriella Cincotti, Univ. degli Studi di Roma Tre (Italy)
Gabriella Cincotti, Univ. degli Studi di Roma Tre (Italy)
Naoya Wada, National Institute of Information and Communications Technology (Japan)
Published in SPIE Proceedings Vol. 9389:
Next-Generation Optical Communication: Components, Sub-Systems, and Systems IV
Guifang Li; Xiang Zhou, Editor(s)
© SPIE. Terms of Use
