
Proceedings Paper
Characterizing germania concentration and structure in fiber soot using multiphoton microscopy and spectroscopy technologyFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Germania doping is commonly used in the core of optical fiber due to its advantages compared to other materials
such as superior transparency in near-infrared telecommunication wavelength region. During fiber preform
manufacturing using the outside vapor deposition (OVD) process, Ge is doped into a silica soot preform by chemical
vapor deposition. Since the Ge doping concentration profile is directly correlated with the fiber refractive index profile,
its characterization is critical for the fiber industry. Electron probe micro-analyzer (EPMA) is a conventional analysis
method for characterizing the Ge concentration profile. However, it requires extensive sample preparation and lengthy
measurement.
In this paper, a multiphoton microscopy technique is utilized to measure the Ge doping profile based on the
multiphoton fluorescence intensity of the soot layers. Two samples, one with ramped and another with stepped Ge
doping profiles were prepared for measurements. Measured results show that the technique is capable of distinguishing
ramped and stepped Ge doping profiles with good accuracy. In the ramped soot sample, a sharp increment of doping
level was observed in about 2 mm range from soot edge followed by a relative slow gradient doping accretion. As for the
stepped doping sample, step sizes ranging from around 1 mm (at soot edge) to 3 mm (at soot center) were observed. All
the measured profiles are in close agreement with that of the EPMA measurements. In addition, both multiphoton
fluorescence (around 420 nm) and sharp second harmonic generations (at 532 nm) were observed, which indicates the
co-existence of crystal and amorphous GeO2.
Paper Details
Date Published: 27 February 2015
PDF: 6 pages
Proc. SPIE 9347, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV, 93471Q (27 February 2015); doi: 10.1117/12.2077731
Published in SPIE Proceedings Vol. 9347:
Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV
Konstantin L. Vodopyanov, Editor(s)
PDF: 6 pages
Proc. SPIE 9347, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV, 93471Q (27 February 2015); doi: 10.1117/12.2077731
Show Author Affiliations
Anping Liu, Corning Incorporated (United States)
Published in SPIE Proceedings Vol. 9347:
Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV
Konstantin L. Vodopyanov, Editor(s)
© SPIE. Terms of Use
