Share Email Print

Proceedings Paper

Investigation of the potential of optical coherence tomography (OCT) as a non-invasive diagnostic tool in reproductive medicine
Author(s): Matthias Trottmann; Christian Homann; R. Leeb; D. Doering; J. Kuznetsova; S. Reese; C. G. Stief; S. Koelle; R. Sroka
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Introduction and objective: In Europe, nearly every sixth couple in the reproductive age is involuntarily childless. In about 30%, both male and female reveal fertility problems. In about 10% of infertile men, azoospermia is the underlying cause. As conventional therapeutic options are limited, surgical testicular sperm extraction (TESE) is necessary to obtain sperms for assisted reproductive techniques. Regarding the females, up to 30% of all idiopathic infertilities are due to alterations of the uterine tube So far, no imaging technique, which does not require any labelling, is available to evaluate the male and female genital tract at a microscopic level under in vivo conditions. Thus, the aim of this study was to investigate the potential of optical coherence tomography (OCT) as a non-invasive diagnostic tool in gynaecology and andrology. Material and Methods: Tissues samples from the bovine testis, epididymis, vas deferens, ovary, oviduct (ampulla and isthmus) and uterus were obtained immediately after slaughter (14 cows aged 3 to 8 years and 14 bulls aged 3 to 6 years; breeds: Holstein- Friesian, and Deutsches Fleckvieh). Imaging was done by using the US Food and Drug Administration (FDA) approved probe-based Niris Imaging System (Imalux, Cleveland, Ohio, USA) and the Telesto 1325 nm OCT System and Ganymede 930 nm OCT System (Thorlabs Inc., Dachau, Germany). All images obtained were compared to histological images after paraffin embedding and HE staining. Results: OCT imaging visualized the microarchitecture of the testis, epididymis, spermatic duct and the ovary, oviduct and uterus. Using the Thorlabs systems a axial resolution of approx. 5μm and lateral resolution of 8- 15μm could be achieved. Different optical tissue volumes could be visualized, which depends on the optical penetration depth of the wavelength of the system used. While the tissue volume observed by probe based Imalux-OCT is similar to the used Thorlabs systems, the optical resolution is reduced. By means of the microscopic OCT-system differentiation of testical tissue structures like content and diameter of seminiferous tubules and the epididymal duct was possible. Structures of the female oviduct, like the primary, secondary and tertiary folds including the typical epithelium consisting of secretory and ciliated cells were identified. Ampulla and isthmus were clearly differentiated by the height of the folds and the thickness of the smooth muscle layer. Imaging was successful both from the outside wall and from the inner lumen. After experience with microscopic OCT-structure identification such structures could also be identified by means of probe based OCT. Conclusions: Technical improvement of probe-based OCT up to a high-resolution level of nowadays-available OCT microscopic systems could open up new ways of in vivo imaging in the reproductive tract. Potential applications could be an OCT-guided testicular biopsy for improving sperm retrieval or microscopic evaluation of the oviduct by OCT-assisted fertiloscopy. The latter would provide a valuable tool to facilitate the decision of which type of assisted reproductive techniques might be preferred.

Paper Details

Date Published: 26 February 2015
PDF: 7 pages
Proc. SPIE 9303, Photonic Therapeutics and Diagnostics XI, 930316 (26 February 2015); doi: 10.1117/12.2077688
Show Author Affiliations
Matthias Trottmann, Ludwig-Maximilians-Univ. Hospital München (Germany)
Christian Homann, Laser-Forschungslabor (Germany)
R. Leeb, Klinikum der Univ. München (Germany)
D. Doering, Laser-Forschungslabor, Klinikum der Univ. München (Germany)
J. Kuznetsova, Laser-Forschungslabor, Klinikum der Univ. München (Germany)
National Research Nuclear Univ. MEPhI (Russian Federation)
S. Reese, Ludwig-Maximilians-Univ. München (Germany)
C. G. Stief, Ludwig-Maximilians-Univ. Hospital München (Germany)
S. Koelle, Univ. College Dublin (Ireland)
R. Sroka, Laser-Forschungslabor, Klinikum der Univ. München (Germany)

Published in SPIE Proceedings Vol. 9303:
Photonic Therapeutics and Diagnostics XI
Hyun Wook Kang; Brian J. F. Wong M.D.; Melissa C. Skala; Bernard Choi; Guillermo J. Tearney M.D.; Andreas Mandelis; Nikiforos Kollias; Kenton W. Gregory M.D.; Mark W. Dewhirst D.V.M.; Justus F. Ilgner M.D.; Alfred Nuttal; Haishan Zeng; Laura Marcu; Claus-Peter Richter, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?