
Proceedings Paper
Fluid dynamic bowtie attenuatorsFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Fluence field modulated CT allows for improvements in image quality and dose reduction. To date, only 1-D modulators have been proposed, the extension to 2-D modulation is difficult with solid-metal attenuation-based modulators. This work proposes to use liquids and gas to attenuate the x-ray beam which can be arrayed allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Gaseous Xenon and liquid Iodine, Zinc Chloride, and Cerium Chloride were studied. Additionally, we performed some proof-of-concept experiments in which (1) a single cell of liquid was connected to a reservoir which allowed the liquid thickness to be modulated and (2) a 96 cell array was constructed in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with Zinc Chloride allowing for the smallest thickness; 1.8, 2.25, 3, and 3.6 cm compensated for 30 cm of soft tissue at 80, 100, 120, and 140 kV respectively. The 96 cell Iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter to primary ratio. Successful modulation of a single cell was performed at 0, 90, and 130 degrees using a simple piston/actuator. The thickness of liquids and the Xenon gas pressure seem logistically implementable within the constraints of CBCT and diagnostic CT systems.
Paper Details
Date Published: 18 March 2015
PDF: 7 pages
Proc. SPIE 9412, Medical Imaging 2015: Physics of Medical Imaging, 94120X (18 March 2015); doi: 10.1117/12.2077618
Published in SPIE Proceedings Vol. 9412:
Medical Imaging 2015: Physics of Medical Imaging
Christoph Hoeschen; Despina Kontos, Editor(s)
PDF: 7 pages
Proc. SPIE 9412, Medical Imaging 2015: Physics of Medical Imaging, 94120X (18 March 2015); doi: 10.1117/12.2077618
Show Author Affiliations
Timothy P. Szczykutowicz, Univ. of Wisconsin-Madison (United States)
James Hermus, Univ. of Wisconsin-Madison (United States)
Published in SPIE Proceedings Vol. 9412:
Medical Imaging 2015: Physics of Medical Imaging
Christoph Hoeschen; Despina Kontos, Editor(s)
© SPIE. Terms of Use
