Share Email Print

Proceedings Paper

Wavefront correction using machine learning methods for single molecule localization microscopy
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Optical Aberrations are a major challenge in imaging biological samples. In particular, in single molecule localization (SML) microscopy techniques (STORM, PALM, etc.) a high Strehl ratio point spread function (PSF) is necessary to achieve sub-diffraction resolution. Distortions in the PSF shape directly reduce the resolution of SML microscopy. The system aberrations caused by the imperfections in the optics and instruments can be compensated using Adaptive Optics (AO) techniques prior to imaging. However, aberrations caused by the biological sample, both static and dynamic, have to be dealt with in real time. A challenge for wavefront correction in SML microscopy is a robust optimization approach in the presence of noise because of the naturally high fluctuations in photon emission from single molecules. Here we demonstrate particle swarm optimization for real time correction of the wavefront using an intensity independent metric. We show that the particle swarm algorithm converges faster than the genetic algorithm for bright fluorophores.

Paper Details

Date Published: 10 March 2015
PDF: 8 pages
Proc. SPIE 9335, Adaptive Optics and Wavefront Control for Biological Systems, 93350L (10 March 2015); doi: 10.1117/12.2077269
Show Author Affiliations
Kayvan F. Tehrani, Univ. of Georgia (United States)
Jianquan Xu, Univ. of Georgia (United States)
Peter Kner, Univ. of Georgia (United States)

Published in SPIE Proceedings Vol. 9335:
Adaptive Optics and Wavefront Control for Biological Systems
Thomas G. Bifano; Joel Kubby; Sylvain Gigan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?