Share Email Print

Proceedings Paper

Extraction and analysis of high-frequency response and impedance of 980-nm VCSELs as a function of temperature and oxide aperture diameter
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Vertical-cavity surface-emitting lasers (VCSELs) are decisive cost-effective, energy-efficient, and reliable light sources for short-reach (up to ~300 m) optical interconnects in data centers and supercomputers. To viably replace copper interconnects and advance to on-chip integrated photonics, reliable VCSELs ideally must be able to operate highly energy efficient, but at large bit rates and without cooling up to 85 °C, with immunity to temperature variations. Our 980 nm VCSELs achieve such temperature-stable, energy-efficient, and high-speed operation coincidently. Record low 139 fJ/bit of dissipated heat for 35 Gbit/s error-free data transmission at 85 °C is reported. Careful design of both the VCSEL’s epitaxial structure and device geometry is of essence. Introducing a suitable gain-to-etalon wavelength offset simultaneously improves the temperature-stability, the maximum bit rate at high temperatures, and the energy efficiency. Tuning the photon lifetime additionally increases the bandwidth by changing the relation between damping and resonance relaxation frequency. Systematic temperature-dependent and oxide aperture-diameter-dependent measurements, including static L-I-V curves and emission spectra, small signal analysis, and data transmission experiments are reported. The modulation bandwidth, the parasitic cut-off frequency, the relaxation resonance frequency, lumped-circuit elements, and the K- and D-factors are derived, useful for energy-efficient optical interconnects based on 980 nm VCSELs.

Paper Details

Date Published: 4 March 2015
PDF: 8 pages
Proc. SPIE 9381, Vertical-Cavity Surface-Emitting Lasers XIX, 93810H (4 March 2015); doi: 10.1117/12.2077182
Show Author Affiliations
Philip Wolf, Technische Univ. Berlin (Germany)
Hui Li, Technische Univ. Berlin (Germany)
Philip Moser, Technische Univ. Berlin (Germany)
Gunter Larisch, Technische Univ. Berlin (Germany)
James A. Lott, Technische Univ. Berlin (Germany)
Dieter Bimberg, Technische Univ. Berlin (Germany)
King Abdulaziz Univ. (Saudi Arabia)

Published in SPIE Proceedings Vol. 9381:
Vertical-Cavity Surface-Emitting Lasers XIX
Chun Lei; Kent D. Choquette, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?