Share Email Print

Proceedings Paper

Hybrid reflection type metasurface of nano-antennas designed for optical needle field generation
Author(s): Shiyi Wang; Qiwen Zhan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid optical antennas for comprehensive spatial engineering the properties of optical fields. Its capability is illustrated with an example to create a radially polarized vectorial beam for optical needle field generation. Functioning as local quarter-wave-plates (QWP), the MIM metasurface is designed to convert circularly polarized incident into local linear polarization to create an overall radial polarization with corresponding binary phases and desired normalized amplitude modulation ranged from 0.07 to 1. To obtain enough degrees of freedom, the optical-antenna layer comprises periodic arrangements of double metallic nano-bars with perpendicular placement and single nano-bars respectively for different amplitude modulation requirements. Both of the antennas enable to introduce π/2 retardation while reaching the desired modulation range both for phase and amplitude. Through adjusting the antennas’ geometry and array carefully, we shift the gap-surface plasmon resonances facilitated by optical antennas to realize the manipulation of vectorial properties. Designed at 1064 nm wavelength, the particularly generated vectorial light output can be further tightly focused by a high numerical aperture objective to obtain longitudinally polarized flat-top focal field. The so-called optical needle field is a promising candidate for novel applications that transcend disciplinary boundaries. The proposed metasurface establishes a new class of compact optical components based on nano-scale structures, leading to compound functions for vectorial light generation.

Paper Details

Date Published: 16 March 2015
PDF: 7 pages
Proc. SPIE 9359, Optical Components and Materials XII, 93590L (16 March 2015); doi: 10.1117/12.2077178
Show Author Affiliations
Shiyi Wang, Univ. of Dayton (United States)
Qiwen Zhan, Univ. of Dayton (United States)

Published in SPIE Proceedings Vol. 9359:
Optical Components and Materials XII
Shibin Jiang; Michel J. F. Digonnet, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?