Share Email Print

Proceedings Paper

High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip
Author(s): Mustafa Akin Sefunc; Frans Segerink; Sonia Garcia-Blanco
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Rare-earth ion doped KY(WO4)2 amplifiers are proposed to be a good candidate for many future applications by benefiting from the excellent gain characteristics of rare-earth ions, namely high bit rate amplification (<Tbps) with low noise figure (<5-6 dB). However, KY(WO4)2 optical waveguide amplifiers based on rare-earth ions were conventionally fabricated on layers overgrown onto undopedKY(WO4)2 substrates. Such amplifiers exhibit a refractive index contrast between the doped and undoped layer of typically <0.02, leading to large devices not suited for the high degree of integration required in photonic applications. Furthermore, the large mode diameter in the waveguide core requires high pump input powers to fully invert the material. In this study, we experimentally demonstrate high index contrast waveguides in crystalline KY(WO4)2, compatible with the integration onto passive photonic platforms. Firstly, a layer of KY(WO4)2 is transferred onto a silicon dioxide substrate using bonding with UV curable optical adhesive. A subsequent polishing step permits precise control of the transferred layer thickness, which defines the height of the waveguides. Small-footprint (in the order of few microns) high index contrast waveguides were patterned using focused ion beam milling. When doped with rare-earth ions, for instance, Er3+ or Yb3+, such high contrast waveguides will lead to very efficient amplifiers, in which the active material can be efficiently pumped by a confined mode with very good overlap with the signal mode. Consequently, lower pump power will be required to obtain same amount of gain from the amplifier leading to power efficient devices.

Paper Details

Date Published: 27 February 2015
PDF: 6 pages
Proc. SPIE 9365, Integrated Optics: Devices, Materials, and Technologies XIX, 93650P (27 February 2015); doi: 10.1117/12.2077086
Show Author Affiliations
Mustafa Akin Sefunc, Univ. Twente (Netherlands)
Frans Segerink, Univ. Twente (Netherlands)
Sonia Garcia-Blanco, Univ. Twente (Netherlands)

Published in SPIE Proceedings Vol. 9365:
Integrated Optics: Devices, Materials, and Technologies XIX
Jean-Emmanuel Broquin; Gualtiero Nunzi Conti, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?