Share Email Print
cover

Proceedings Paper

Semi-analytical and CFD model calculations of subsonic flowing-gas DPALs and their comparison to experimental results
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Application of two- and-three dimensional computational fluid dynamics (2D and 3D CFD) models to subsonic flowing-gas DPALs is reported. The 2D model is applied to a DPAL with optical resonator-flow field coaxial configuration and the 3D model is applied to an optical axis transverse to the flow configuration. The models take into account effects of temperature rise and losses of alkali atoms due to ionization. The 2D CFD model is applied to 1 kW flowing-gas Cs DPAL [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] and the calculated results are in good agreement with the measurements. Comparison of the 2D CFD to semi-analytical model [B. D. Barmashenko and S. Rosenwaks, J. Opt. Soc. Am. B 30, 1118 (2013)] shows that for low pump power both models predict very close values of the laser power; however, at higher pump power, corresponding to saturation of the absorption of the pump transition, the laser power calculated using the 2D CFD model is much higher than that obtained using the semi-analytical model. At high pump power, the heat convection out of the laser resonator is more efficient for the transverse case than the coaxial case, the beam temperature is lower and consequently the calculated laser power is higher. Optimization of the Cs DPAL parameters, using 3D CFD modeling, shows that applying high flow velocity and narrowband pumping, maximum lasing power as high as 40 kW can be obtained at pump power of 80 kW for transverse flow configuration in a pumped volume of ~ 0.7 cm3.

Paper Details

Date Published: 3 February 2015
PDF: 15 pages
Proc. SPIE 9255, XX International Symposium on High-Power Laser Systems and Applications 2014, 925520 (3 February 2015); doi: 10.1117/12.2070676
Show Author Affiliations
Boris D. Barmashenko, Ben-Gurion Univ. of the Negev (Israel)
Salman Rosenwaks, Ben-Gurion Univ. of the Negev (Israel)
Karol Waichman, Ben-Gurion Univ. of the Negev (Israel)


Published in SPIE Proceedings Vol. 9255:
XX International Symposium on High-Power Laser Systems and Applications 2014
Chun Tang; Shu Chen; Xiaolin Tang, Editor(s)

© SPIE. Terms of Use
Back to Top