Share Email Print

Proceedings Paper

Identifying volcanic endmembers in hyperspectral images using spectral unmixing
Author(s): Alessandro Piscini; Elisa Carboni; Fabio Del Frate; Roy Gordon Grainger
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Spectral unmixing technique is used in remote sensed data analysis for the determination of certain basis spectra called 'endmembers'. Once those spectra are found, the image cube can be 'unmixed' into fractional abundance of each material in each pixel. In the present work infrared spectra recorded by Infrared Atmospheric Sounding Interferometer (IASI) were used to characterize the emission from Grimsvotn volcanic eruption on 2011. In particular, a methodology based on spectral unmixing theory was used in order to extract the spectral signature of volcanic cloud constituents, such as ash and sulphur dioxide (SO2) and maps of their abundances in a IASI image were obtained. Taking the advantage of IASI broad spectral coverage the broadband signature in the Thermal Infrared (TIR) radiance spectra in the 1000-1410 cm-1 range associated with the presence of aerosols was obtained. Volcanic ash and SO2 spectral signatures were extracted, as well as those related to the simultaneous presence of ash, SO2 and cloud. The study proved that spectral unmixing, applied to Hyperspectral images, is able to identify volcanic aerosols and other species like SO2 despite a strong presence of meteorological clouds. Moreover, the analysis of hyperspectral datasets permitted to generate abundance maps for each endmember extracted. In particular, maps obtained for the test case of 2011 May, 23th put in evidence the separation between clouds of ejected SO2 and volcanic ash. The former dispersed at Northern latitudes, whilst the latter was situated at southern latitudes, South of Iceland.

Paper Details

Date Published: 21 October 2014
PDF: 6 pages
Proc. SPIE 9242, Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII, 924215 (21 October 2014); doi: 10.1117/12.2066649
Show Author Affiliations
Alessandro Piscini, Istituto Nazionale di Geofisica e Vulcanologia (Italy)
Elisa Carboni, Univ. of Oxford (United Kingdom)
Fabio Del Frate, Univ. degli Studi di Roma "Tor Vergata" (Italy)
Roy Gordon Grainger, Univ. of Oxford (United Kingdom)

Published in SPIE Proceedings Vol. 9242:
Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII
Adolfo Comerón; Karin Stein; John D. Gonglewski; Evgueni I. Kassianov; Klaus Schäfer; Richard H. Picard, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?