Share Email Print

Proceedings Paper

Steady-state photoconductivity of amorphous (As4S3Se3)1-x:Snx films
Author(s): O. V. Iaseniuc; M. S. Iovu; I. A. Cojocaru; A. M. Prisacar
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Amorphous arsenic trisulfide (As2S3) and arsenic triselenide (As2Se3) are among widely investigated amorphous materials due to its interesting electrical, optical and photoelectrical properties. In order to improve the physical properties and recording characteristics, and to extend the spectral range of photosensibility, a special interest represents the mixed amorphous materials, like (As2S3):(As2Se3). Chalcogenide vitreous semiconductors (ChVS) of the As-S-Se system exhibit photostructural transformations with reversible and irreversible properties, and are promising materials as registration media for holography and optical information, for fabrication of diffractive elements, and other optoelectronic applications. Because many optoelectronic devices on amorphous semiconductors are based on the photoconductivity effect, special interests represent investigation of the stationary and non-stationary characteristics of photoconductivity. In this paper the experimental results of steady-state photoconductivity and holographic characteristics of amorphous (As4S3Se3)1-x:Snx thin films are presented. It was shown that the photoconductivity spectra depend on the polarity on the top illuminated electrode and on the Sn concentration in the host glass. The photosensitivity of amorphous ((As4S3Se3)1-x:Snx thin films is almost constant for all Sn-containing glasses. The Moss rule was used for determination of the optical forbidden gap Eg from the photoconductivity spectra. It was demonstrated that the investigated amorphous films are sensitive to the light irradiation and can be used as effective registration media for holographic information. The relaxation of photodarkening in amorphous (As4S3Se3)1-x:Snx thin films was investigated and was shown that the relaxation curves of transmittance T/T0 = f(t) can be described the stretch exponential function T(t)/T(0) = A0+Aexp[-(t-t0)/τ] (1-β) . The kinetics of diffraction efficiency growth η(t) was measured by registration of the laser intensity of the 1-st interference maximum versus time exposure. With increasing of Sn concentration in amorphous (As4S3Se3)1-x:Snx thin films up to 6.0 at. % Sn, the diffraction efficiency η increases, than for higher concentrations of tin, decreases.

Paper Details

Date Published: 20 February 2015
PDF: 6 pages
Proc. SPIE 9258, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VII, 92580M (20 February 2015); doi: 10.1117/12.2065542
Show Author Affiliations
O. V. Iaseniuc, Institute of Applied Physics (Moldova)
M. S. Iovu, Institute of Applied Physics (Moldova)
I. A. Cojocaru, Institute of Applied Physics (Moldova)
A. M. Prisacar, Institute of Applied Physics (Moldova)

Published in SPIE Proceedings Vol. 9258:
Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VII
Ionica Cristea; Marian Vladescu; Razvan Tamas, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?