Share Email Print

Proceedings Paper

Regular sub-wavelength surface structures induced by femtosecond laser pulses on nickel
Author(s): Litao Qi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this research, the formation of laser-induced periodic surface structures (LIPSS) on the nickel surface by femtosecond laser pulses was investigated. In the experiment, we used a commercially available amplified Ti:sapphire laser system that generated 164 fs laser pulses with a maximum pulse energy (Ep) of 1 mJ at a 1 kHz repetition rate and with a central wavelength λ= 780 nm. To obtain a fine periodic ordering of surface nanostructures, the laser beam, through a 0.2 mm pinhole aperture positioned near the 10× objective lens, was focused onto the sample. The samples were mounted on an XYZ-translation stage and irradiated in static and line-scanning experiment. The morphology of the induced periodic structure was examined by scanning electron microscopy. The surface profile was measured by atomic force microscopy. LIPSS with a period of around 700 nm entirely covered the irradiated area. Large area of LIPSS in the nickel surface was produced in line-scanning experiment. The mechanism of the formation of LIPSS in the entire irradiated area in static irradiation was discussed. The function of a 0.2 mm pinhole aperture was studied. The regular LIPSS on the nickel surface changed the optical property of the surface. The regular LIPSS on nickel surface could be also applied on the micro-mould fabrication.

Paper Details

Date Published: 3 February 2015
PDF: 5 pages
Proc. SPIE 9255, XX International Symposium on High-Power Laser Systems and Applications 2014, 92553X (3 February 2015); doi: 10.1117/12.2063875
Show Author Affiliations
Litao Qi, Heilongjiang Institute of Science and Technolology (China)

Published in SPIE Proceedings Vol. 9255:
XX International Symposium on High-Power Laser Systems and Applications 2014
Chun Tang; Shu Chen; Xiaolin Tang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?