Share Email Print

Proceedings Paper

Coherent radiation enhancement for laser beam shaping applications
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We describe a novel coherent radiation enhancement technique and its application to laser beam shaping. The technique is based on coherent transformations of the propagating radiation employing amplitude and/or phase structures, and produces localized radiation enhancements in the output plane. The described technique offers significant flexibility in generating a variety of output laser beam shapes. Employment of electronically controllable spatial light modulators in place of the phase or amplitude structures allows dynamic adjustments of the output laser beam patterns. We demonstrate the influence of various parameters on the resulting output radiation enhancements, including the effects of the shape of the propagating radiation as well as the shape and size of the phase or amplitude structures. Our results indicate that by appropriately selecting the phase and amplitude characteristics of the structures employed during the beam shaping, a significant increase in the resulting peak intensities of the shaped beams is achieved.

Paper Details

Date Published: 25 September 2014
PDF: 10 pages
Proc. SPIE 9194, Laser Beam Shaping XV, 91940D (25 September 2014); doi: 10.1117/12.2063031
Show Author Affiliations
M. Soskind, Rutgers, The State Univ. of New Jersey (United States)
R. Soskind, Rutgers, The State Univ. of New Jersey (United States)
Y. G. Soskind, DHPC Technologies, Inc. (United States)

Published in SPIE Proceedings Vol. 9194:
Laser Beam Shaping XV
Andrew Forbes; Todd E. Lizotte, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?