Share Email Print

Proceedings Paper

The absolute radiometric calibration of Terra imaging sensors: MODIS, MISR, and ASTER
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Terra spacecraft contains five Earth-observation instruments, three of which are multispectral imaging sensors that complement each other in spectral and spatial coverage. The Moderate Resolution Imaging Spectroradiometer (MODIS) has 36 channels ranging from 0.4–14.4 μm, with spatial resolutions of 250, 500, and 1000 m. The Multi-angle Imaging SpectroRadiometer (MISR) uses individual imaging sensors to view the earth at nine discreet angles. Each radiometer has four channels in the visible and near infrared (VNIR), and the nadir-viewing camera has a spatial resolution of 275 m. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was designed with fourteen bands ranging from 0.5–11.6 μm. It is the high-resolution sensor on Terra, with a spatial resolution of 15 m in the VNIR, and 30 m in the shortwave infrared (SWIR). This work describes the vicarious techniques used to perform the absolute radiometric calibration of MODIS, MISR, and ASTER in the solar-reflective region (0.4–2.5 μm). It includes the reflectance-based approach, which uses ground-based personnel to make in situ measurements during the time of overpass. It also includes more recent results that were obtained using the University of Arizona’s automated Radiometric Calibration Test Site (RadCaTS) at Railroad Valley, Nevada. In addition to the absolute radiometric calibration of Terra sensors, RadCaTS is used to perform the cross comparison of MODIS, MISR, and ASTER with Landsat 7 ETM+ and Landsat 8 OLI.

Paper Details

Date Published: 2 October 2014
PDF: 10 pages
Proc. SPIE 9218, Earth Observing Systems XIX, 92180Y (2 October 2014); doi: 10.1117/12.2062529
Show Author Affiliations
Jeffrey Czapla-Myers, College of Optical Sciences, The Univ. of Arizona (United States)
Kurtis Thome, NASA Goddard Space Flight Ctr. (United States)
Nikolaus Anderson, College of Optical Sciences, The Univ. of Arizona (United States)
Stuart Biggar, College of Optical Sciences, The Univ. of Arizona (United States)

Published in SPIE Proceedings Vol. 9218:
Earth Observing Systems XIX
James J. Butler; Xiaoxiong (Jack) Xiong; Xingfa Gu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?