Share Email Print

Proceedings Paper

Optical attenuation of plasmonic Au-PDMS nanocomposite thin-film devices
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Compact description of far-field optical interactions between plasmonic nanocomposites and adjacent media permits facile a priori design of devices for light manipulation. Limited tractability of nanoscale descriptions at device-architectures previously limited development of plasmonic devices. Optical interactions between nanocomposites and adjacent optical elements, a simple device, are describable using infinite linear algebraic sums. Influence of plasmonic absorption and non-linear phenomena on device performance are distinguishable from measured transmission, reflection, and attenuation (resonant and non-resonant losses) of nanocomposites featuring nanoparticles in multiple dimensions. Two- and threedimensional distributions of gold nanoparticles supported by silica and poly(dimethylsiloxane) substrates, respectively, are considered. A unique ternary map of transmission, reflection, and attenuation correlates far-field optical behavior to nanoparticle density and opacity of the adjacent element. Intuitive, visual specification of nanoparticle density and adjacent media needed to obtain a desired optical behavior is possible using the ternary map. The compact model and ternary map provide useful tools for the design and integration of plasmonic nanocomposites into photonic devices for sustainable energy and biomedical applications.

Paper Details

Date Published: 10 September 2014
PDF: 6 pages
Proc. SPIE 9161, Nanophotonic Materials XI, 916115 (10 September 2014); doi: 10.1117/12.2062252
Show Author Affiliations
Gregory T. Forcherio, Univ. of Arkansas (United States)
D. Keith Roper, Univ. of Arkansas (United States)

Published in SPIE Proceedings Vol. 9161:
Nanophotonic Materials XI
Stefano Cabrini; Gilles Lérondel; Adam M. Schwartzberg; Taleb Mokari, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?