Share Email Print

Proceedings Paper

Calibration Impact Assessment of MODIS Spectral Band Location on the Focal Plane Assemblies
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The key on-board calibrators (OBCs) of MODIS include a solar diffuser (SD) for the reflective solar bands calibration and a blackbody (BB) for the thermal emissive bands calibration. MODIS also has a space view (SV) port through which the detectors can view the dark space to provide background signal and the Moon during lunar calibration. As a whiskbroom scanning spectroradiometer, the spectral bands of MODIS are spread on its focal plane assemblies (FPA) in the along-scan direction. The images of these bands are spatially co-registered by delaying the observations of individual band according to their location on the FPA to account for the along-scan motion needed to view the same target. While this co-registration works well for the “far field” Earth view (EV) target, significant band-to-band image misregistration in the along-scan direction has been observed when the detectors view “near field” targets, such as the OBCs. In this paper, this “near field” misregistration phenomenon is presented and analyzed, using the OBC images acquired when the electric sector rotation is applied. It is shown that the amount of the misregistration is proportional to the band location and the linear coefficient is inversely proportional to the distance between the object and the scan mirror. The root cause of the misregistration is provided. Also discussed in this paper is the calibration impact due to the “near field” misregistration for MODIS and sensors with MODIS-like scanning mechanism.

Paper Details

Date Published: 26 September 2014
PDF: 11 pages
Proc. SPIE 9218, Earth Observing Systems XIX, 92181M (26 September 2014); doi: 10.1117/12.2062000
Show Author Affiliations
Zhipeng Wang, Sigma Space Corp. (United States)
Xiaoxiong Xiong, NASA Goddard Space Flight Ctr. (United States)

Published in SPIE Proceedings Vol. 9218:
Earth Observing Systems XIX
James J. Butler; Xiaoxiong (Jack) Xiong; Xingfa Gu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?