Share Email Print

Proceedings Paper

Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics
Author(s): Anastasiia Solodovnyk; Andre Hollmann; Andres Osvet; Karen Forberich; Edda Stern; Miroslaw Batentschuk; Robin Klupp Taylor; Christoph J. Brabec
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this contribution we discuss luminescent down-shifting (LDS) systems consisting of a polymer matrix filled with phosphor particles. It is an elegant approach to make a use of potentially destructive or otherwise wasted high energy photons and diminish charge carrier losses caused by thermalization in photovoltaics. Sub-micron and micron sized particles of strontium aluminate doped with Eu2+ and strontium carbonate doped with Eu3+ ions are chosen for the application due to their suitable absorption in UV spectral region. These particles exhibit strong luminescence in the visible range between 520 and 650 nm. The systems are carefully designed to meet critical optical requirements such as high transparency in the visible spectrum as well as sufficient absorption of UV light. They are coated on quartz glass substrates (20 x 20 x 1 mm) and can be easily laminated to different kinds of solar cells without any modification to well-established device fabrication processes. Optical characterization further confirms that particles of a few microns in size generate strong light scattering in layers due to the sizes slightly larger than visible light wavelengths. Dried thick layers of 20 to 100 μm are tested with CIGS and organic cells. The concept of light conversion is experimentally proven. However, optical losses cause a reduction in the overall performance of the tested devices. Possible ways to bring down the amount of light scattering and, thus, to increase optical transmission for the studied system are also addressed, and are a subject of future research.

Paper Details

Date Published: 7 October 2014
PDF: 11 pages
Proc. SPIE 9178, Next Generation Technologies for Solar Energy Conversion V, 917806 (7 October 2014); doi: 10.1117/12.2061044
Show Author Affiliations
Anastasiia Solodovnyk, ZAE Bayern (Germany)
Friedrich-Alexander-Univ. Erlangen-Nürnberg (Germany)
Erlangen Graduate School in Advanced Optical Technologies (Germany)
Andre Hollmann, Friedrich-Alexander-Univ. Erlangen-Nürnberg (Germany)
Institute of Particle Technology (Germany)
Andres Osvet, Friedrich-Alexander-Univ. Erlangen-Nürnberg (Germany)
Karen Forberich, Friedrich-Alexander-Univ. Erlangen-Nürnberg (Germany)
Edda Stern, ZAE Bayern (Germany)
Miroslaw Batentschuk, Friedrich-Alexander-Univ. Erlangen-Nürnberg (Germany)
Robin Klupp Taylor, Institute of Particle Technology (Germany)
Christoph J. Brabec, ZAE Bayern (Germany)
Friedrich-Alexander-Univ. Erlangen-Nürnberg (Germany)
Erlangen Graduate School in Advanced Optical Technologies (Germany)

Published in SPIE Proceedings Vol. 9178:
Next Generation Technologies for Solar Energy Conversion V
Oleg V. Sulima; Gavin Conibeer, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?