Share Email Print

Proceedings Paper

Statistical analysis of the electronic crosstalk correction in Terra MODIS Band 27
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The first MODerate-resolution Imaging Spectroradiometer (MODIS), also known as the Proto-Flight model (PFM), is on-board the Terra spacecraft and has completed 14 years of on orbit flight as of December 18, 2013. MODIS remotely senses the Earth in 36 spectral bands, with a wavelength range from 0.4 μm to 14.4 μm. The 36 bands can be subdivided into two groups based on their spectral responsivity as Reflective Solar Bands (RSBs) and Thermal Emissive Bands (TEBs). Band 27 centered at 6.77 μm is a TEB used to study the global water vapor distribution. It was found recently that this band has been severely affected by electronic crosstalk. The electronic crosstalk magnitude, its on-orbit change and calibration impact have been well characterized in our previous studies through the use of regularly scheduled lunar observations. Further, the crosstalk correction was implemented in Earth view (EV) images and quantified the improvements of the same. However, improvements remained desirable on several fronts. Firstly, the effectiveness of the correction needed to be analyzed spatially and radiometrically over a number of scenes. Also, the temporal aspect of the correction had to be investigated in a rigorous manner. In order to address these issues, a one-orbit analysis was performed on the Level 1A (L1A) scene granules over a ten year period from 2003 through 2012. Results have been quantified statistically and show a significant reduction of image striping, as well as removal of leaked signal features from the neighboring bands. Statistical analysis was performed by analyzing histograms of the one-orbit granules at a scene and detector level before and after correction. The comprehensive analysis and results reported in this paper will be very helpful to the scientific community in understanding the impacts of crosstalk correction on various scenes and could potentially be applied for future improvements of band 27 calibration and, therefore, its retrieval for the Level 2 (L2) geophysical parameters.

Paper Details

Date Published: 3 October 2014
PDF: 9 pages
Proc. SPIE 9218, Earth Observing Systems XIX, 921824 (3 October 2014); doi: 10.1117/12.2060718
Show Author Affiliations
Sriharsha Madhavan, Science Systems and Applications, Inc. (United States)
Junqiang Sun, NOAA NESDIS (United States)
Global Science and Technology (United States)
Xiaoxiong Xiong, NASA Goddard Space Flight Ctr. (United States)
Brian N. Wenny, Sigma Space Corp. (United States)
Aisheng Wu, Sigma Space Corp. (United States)

Published in SPIE Proceedings Vol. 9218:
Earth Observing Systems XIX
James J. Butler; Xiaoxiong (Jack) Xiong; Xingfa Gu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?