Share Email Print

Proceedings Paper

Dynamic classifier combination using neural network
Author(s): Dar-Shyang Lee; Sargur N. Srihari
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

There is an increasing trend in recent OCR research to improve recognition performance by combining several complementary algorithms. Numerous successful applications of classifier combination have been described in the literature. However, most of the combination algorithms neglect the fact that classifier performances are dependent on various pattern and image characteristics. More effective combination can be achieved if that dependency information is used to dynamically combine classifiers. Two types of dynamic selections are distinguished. The postconditioned selection seeks better approximation to unconditioned classifier output distribution. The preconditioned selection captures the variations in the density function of classifier outputs conditioned on the inputs. Although both types of selections have the potential to improve combination performance, we argue that preconditioned selections have lower error bounds than postconditioned selections. The difficulties of applying preconditioned selections are identifying characteristic variables and estimating their effects on classifier outputs. A solution using neural network to achieve preconditioned selection is suggested. Two examples on handprinted digit recognition are used to illustrate the potential gain.

Paper Details

Date Published: 30 March 1995
PDF: 12 pages
Proc. SPIE 2422, Document Recognition II, (30 March 1995); doi: 10.1117/12.205838
Show Author Affiliations
Dar-Shyang Lee, SUNY/Buffalo (United States)
Sargur N. Srihari, SUNY/Buffalo (United States)

Published in SPIE Proceedings Vol. 2422:
Document Recognition II
Luc M. Vincent; Henry S. Baird, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?