Share Email Print

Proceedings Paper

Equipment vibration budget for the TMT
Author(s): Douglas G. MacMartin; Hugh Thompson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing observatories, for adaptive optics performance in particular. To ensure that that the total optical performance degradation due to vibration is less than the corresponding optical error budget allocation, a vibration budget has been created that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). In addition to its primary purpose, the vibration budget allows us to make design trade-offs, specify isolation requirements for equipment, and tighten or widen individual equipment vibration specifications as necessary. Defining this budget relies on two types of information: (i) vibration transmission analysis that determines the optical consequences that result from forces applied at different locations in the Observatory and at different frequencies; and (ii) initial estimates for plausible source amplitudes in order to allocate force budgets to different sources in the most realistic and cost-effective manner. The transmission of vibration from sources through to their optical consequences uses the finite element model of the telescope structure, including primary mirror seg- ment models and control loops. Both the image jitter and higher-order deformations due to M1 segment motion are included, along with the spatial- and temporal-correctability by the adaptive optics system. Measurements to support estimates of plausible soil transmissibility are described in a companion paper. As the detailed design progresses and more information is available regarding what is achievable at realistic cost, the vibration budget will be refined.

Paper Details

Date Published: 22 July 2014
PDF: 8 pages
Proc. SPIE 9145, Ground-based and Airborne Telescopes V, 91452O (22 July 2014); doi: 10.1117/12.2057179
Show Author Affiliations
Douglas G. MacMartin, Thirty Meter Telescope Observatory Corp. (United States)
Hugh Thompson, California Institute of Technology (United States)
Thirty Meter Telescope Observatory Corp. (United States)

Published in SPIE Proceedings Vol. 9145:
Ground-based and Airborne Telescopes V
Larry M. Stepp; Roberto Gilmozzi; Helen J. Hall, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?