Share Email Print

Proceedings Paper

AGN BLR structure, luminosity and mass from combined reverberation mapping and optical interferometry observations
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Unveiling the structure of the Broad-Line Region (BLR) of AGN is critical to understand the quasar phenomenon. Detail study of the geometry and kinematic of these objects can answer the basic questions about the central BH mass, accretion mechanism and rate, growth and evolution history. Observing the response of the BLR clouds to continuum variations, Reverberation Mapping (RM) provides size-luminosity and mass-luminosity relations for QSOs and Sy1 AGNs with the goal to use these objects as standard candles and mass tags. However, the RM size can receive different interpretations depending on the assumed geometry and the corresponding mass depends on an unknown geometrical factor as well on the possible confusion between local and global velocity dispersion. From RM alone, the scatter around the mean mass is as large as a factor 3. Though BLRs are expected to be much smaller than the current spatial resolution of large optical interferometers (OI), we show that differential interferometry with AMBER, GRAVITY and successors can measure the size and constrain the geometry and kinematics on a large sample of QSOs and Sy1 AGNs. AMBER and GRAVITY (K_ 10:5) could be easily extended up to K= 13 by an external coherencer or by advanced incoherent" data processing. Future VLTI instrument could reach K~ 15. This opens a large AGN BLR program intended to obtain a very accurate calibration of mass, luminosity and distance measurements from RM data which will allow using many QSOs as standard candles and mass tags to study the general evolution of mass accretion in the Universe. This program is analyzed with our BLR model allowing predicting and interpreting RM and OI measures together and illustrated with the results of our observations of 3C273 with the VLTI.

Paper Details

Date Published: 24 July 2014
PDF: 15 pages
Proc. SPIE 9146, Optical and Infrared Interferometry IV, 91460Q (24 July 2014); doi: 10.1117/12.2056436
Show Author Affiliations
Suvendu Rakshit, Lab. Joseph-Louis Lagrange, CNRS, Observatoire de la Côte d'Azur (France)
Univ. de Nice Sophia-Antipolis (France)
Romain G. Petrov, Lab. Joseph-Louis Lagrange, CNRS, Observatoire de la Côte d'Azur (France)
Univ. de Nice Sophia-Antipolis (France)

Published in SPIE Proceedings Vol. 9146:
Optical and Infrared Interferometry IV
Jayadev K. Rajagopal; Michelle J. Creech-Eakman; Fabien Malbet, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?