Share Email Print

Proceedings Paper

Soil pore-gas sampling by photoacoustic radiometry
Author(s): Jon E. Sollid
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Concentrations of volatile organics in a soil pore-gas plume were measured using a commercially available multigas monitor. The monitor is a photoacoustic radiometer (PAR) controlled by an on-board, programmable microprocessor. The measurements determine the extent and location of the vapor plume in the subsurface. At least twelve wells surrounding the sources are measured quarterly. The sources are located in former liquid chemical waste disposal pits and shafts at Los Alamos National Laboratory. The primary constituents of the plume are 1,1,1 trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene or perchloroethene (PCE). Four quarters of data are presented for TCA. All were used primarily as solvents and degreasers. Previously the composition of the vapor plume was determined by gas chromatography mass spectrometer (GCMS) methods. Photoacoustic radiometry and gas chromatography are discussed giving the advantages and disadvantages of each method, although in this program they are basically complementary. Gas chromatography is a more qualitative method to determine which analytes are present and the approximate concentration. Photoacoustic radiometry, to function well, requires foreknowledge of constituents and serves best to determine how much is present. Measurements are quicker and more direct with photoacoustic methods. Once the constituents to be measured are known, the cost to monitor is much less using photoacoustics, and the results are available more quickly. The photoacoustic radiometer uses narrow band filters in the region where trimmer or higher molecules have vibrational and rotational resonances, from 2.5 to 15 micrometers (4,000 to 650 reciprocal centimeters). The multigas monitor used is a Model 1302 manufactured by Bruel and Kjaer, a Danish company.

Paper Details

Date Published: 10 February 1995
PDF: 9 pages
Proc. SPIE 2366, Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements, (10 February 1995); doi: 10.1117/12.205558
Show Author Affiliations
Jon E. Sollid, Los Alamos National Lab. (United States)

Published in SPIE Proceedings Vol. 2366:
Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements
Michael G. Yost; Dennis K. Killinger; Joseph Leonelli; William Vaughan; Dennis K. Killinger; William Vaughan; Michael G. Yost, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?