
Proceedings Paper
Quantum holography based on second-order correlation measurementFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
The quantum holography scenario with classical thermal light source based on the second-order correlation measurement is proposed. Contrastive analysis prove that the quantum holography can be carried out with classical thermal light source and entangled two-photon light source. For the second-order correlation measurement in quantum holography, the “unbalanced test system” condition must be satisfied.
Paper Details
Date Published: 21 February 2014
PDF: 7 pages
Proc. SPIE 9142, Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics: Optical Imaging, Remote Sensing, and Laser-Matter Interaction 2013, 91420B (21 February 2014); doi: 10.1117/12.2054079
Published in SPIE Proceedings Vol. 9142:
Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics: Optical Imaging, Remote Sensing, and Laser-Matter Interaction 2013
Jorge Ojeda-Castaneda; Shensheng Han; Ping Jia; Jiancheng Fang; Dianyuan Fan; Liejia Qian; Yuqiu Gu; Xueqing Yan, Editor(s)
PDF: 7 pages
Proc. SPIE 9142, Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics: Optical Imaging, Remote Sensing, and Laser-Matter Interaction 2013, 91420B (21 February 2014); doi: 10.1117/12.2054079
Show Author Affiliations
Published in SPIE Proceedings Vol. 9142:
Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics: Optical Imaging, Remote Sensing, and Laser-Matter Interaction 2013
Jorge Ojeda-Castaneda; Shensheng Han; Ping Jia; Jiancheng Fang; Dianyuan Fan; Liejia Qian; Yuqiu Gu; Xueqing Yan, Editor(s)
© SPIE. Terms of Use
