Share Email Print

Proceedings Paper

Robust tracking by cellular automata and neural networks with nonlocal weights
Author(s): Gennadii A. Ososkov
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A modified rotor model of the Hopfield neural networks (HNN) is proposed for finding tracks in multiwire proportional chambers. That requires us to apply both raw data prefiltering by cellular automaton and HNN weights furnishing by a special robust multiplier. Then this model is developed to be applicable for a more general type of data and detectors. As an example, data processing of ionospheric measurements are considered. For handling tracks detected by high pressure drift chambers with their up-down ambiguity a modification of deformable templates method is proposed. A new concept of controlled HNN is proposed for solving the so-called track-match problem.

Paper Details

Date Published: 6 April 1995
PDF: 12 pages
Proc. SPIE 2492, Applications and Science of Artificial Neural Networks, (6 April 1995); doi: 10.1117/12.205115
Show Author Affiliations
Gennadii A. Ososkov, Joint Institute for Nuclear Research (Russia)

Published in SPIE Proceedings Vol. 2492:
Applications and Science of Artificial Neural Networks
Steven K. Rogers; Dennis W. Ruck, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?