Share Email Print

Proceedings Paper

A data fusion approach to indications and warnings of terrorist attacks
Author(s): David McDaniel; Gregory Schaefer
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Indications and Warning (I&W) of terrorist attacks, particularly IED attacks, require detection of networks of agents and patterns of behavior. Social Network Analysis tries to detect a network; activity analysis tries to detect anomalous activities. This work builds on both to detect elements of an activity model of terrorist attack activity – the agents, resources, networks, and behaviors. The activity model is expressed as RDF triples statements where the tuple positions are elements or subsets of a formal ontology for activity models. The advantage of a model is that elements are interdependent and evidence for or against one will influence others so that there is a multiplier effect. The advantage of the formality is that detection could occur hierarchically, that is, at different levels of abstraction. The model matching is expressed as a likelihood ratio between input text and the model triples. The likelihood ratio is designed to be analogous to track correlation likelihood ratios common in JDL fusion level 1. This required development of a semantic distance metric for positive and null hypotheses as well as for complex objects. The metric uses the Web 1Terabype database of one to five gram frequencies for priors. This size requires the use of big data technologies so a Hadoop cluster is used in conjunction with OpenNLP natural language and Mahout clustering software. Distributed data fusion Map Reduce jobs distribute parts of the data fusion problem to the Hadoop nodes. For the purposes of this initial testing, open source models and text inputs of similar complexity to terrorist events were used as surrogates for the intended counter-terrorist application.

Paper Details

Date Published: 22 May 2014
PDF: 15 pages
Proc. SPIE 9122, Next-Generation Analyst II, 912204 (22 May 2014); doi: 10.1117/12.2050501
Show Author Affiliations
David McDaniel, Silver Bullet Solutions, Inc. (United States)
Gregory Schaefer, Silver Bullet Solutions, Inc. (United States)

Published in SPIE Proceedings Vol. 9122:
Next-Generation Analyst II
Barbara D. Broome; David L. Hall; James Llinas, Editor(s)

© SPIE. Terms of Use
Back to Top