Share Email Print
cover

Proceedings Paper

Characteristic impedance of a microchannel with two immiscible microfluids
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Consider the case of a microcapillary of radius R with two microfluidic immiscible. The micro-capillary region 0 < r < R1 is occupied by the microfluidic less dense and less viscous; while the microcapillary region R1 <0 < R is occupied by the microfluidic more dense and more viscous. Determine the characteristic impedance of the microcapillary in this case when both microfluidics are driven by the same pressure gradient as the boundary condition at the wall of the microcapillary is of the non-Newtonian slip. The Navier Stokes equation is solved for both microfluidic methods using the Laplace transform. The velocity profiles are expressed in terms of Bessel functions. Similarly, the characteristic impedance of the microcapillary is expressed by a complex formula Bessel functions. Obtain the analytical results are important for designing engineering microdevices with applications in pharmaceutical, food engineering, nanotechnology and biotechnology in general in particular. For future research it is interesting to consider the case of boundary conditions with memory effects.

Paper Details

Date Published: 22 May 2014
PDF: 12 pages
Proc. SPIE 9107, Smart Biomedical and Physiological Sensor Technology XI, 91070I (22 May 2014); doi: 10.1117/12.2049765
Show Author Affiliations
Daniela Jaramillo Raquejo, Univ. EAFIT (Colombia)


Published in SPIE Proceedings Vol. 9107:
Smart Biomedical and Physiological Sensor Technology XI
Brian M. Cullum; Eric S. McLamore, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray