Share Email Print

Proceedings Paper

Separating complex compound patient motion tracking data using independent component analysis
Author(s): C. Lindsay; K. Johnson; M. A. King
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In SPECT imaging, motion from respiration and body motion can reduce image quality by introducing motion-related artifacts. A minimally-invasive way to track patient motion is to attach external markers to the patient’s body and record their location throughout the imaging study. If a patient exhibits multiple movements simultaneously, such as respiration and body-movement, each marker location data will contain a mixture of these motions. Decomposing this complex compound motion into separate simplified motions can have the benefit of applying a more robust motion correction to the specific type of motion. Most motion tracking and correction techniques target a single type of motion and either ignore compound motion or treat it as noise. Few methods account for compound motion exist, but they fail to disambiguate super-position in the compound motion (i.e. inspiration in addition to body movement in the positive anterior/posterior direction). We propose a new method for decomposing the complex compound patient motion using an unsupervised learning technique called Independent Component Analysis (ICA). Our method can automatically detect and separate different motions while preserving nuanced features of the motion without the drawbacks of previous methods. Our main contributions are the development of a method for addressing multiple compound motions, the novel use of ICA in detecting and separating mixed independent motions, and generating motion transform with 12 DOFs to account for twisting and shearing. We show that our method works with clinical datasets and can be employed to improve motion correction in single photon emission computed tomography (SPECT) images.

Paper Details

Date Published: 12 March 2014
PDF: 8 pages
Proc. SPIE 9036, Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling, 90360L (12 March 2014); doi: 10.1117/12.2043980
Show Author Affiliations
C. Lindsay, Worcester Polytechnic Institute (United States)
K. Johnson, Univ. of Massachusetts Medical School (United States)
M. A. King, Univ. of Massachusetts Medical School (United States)

Published in SPIE Proceedings Vol. 9036:
Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling
Ziv R. Yaniv; David R. Holmes III, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?