
Proceedings Paper
Towards continualized task-based resolution modeling in PET imagingFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
We propose a generalized resolution modeling (RM) framework, including extensive task-based optimization,
wherein we continualize the conventionally discrete framework of RM vs. no RM, to include varying degrees of RM.
The proposed framework has the advantage of providing a trade-off between the enhanced contrast recovery by RM and
the reduced inter-voxel correlations in the absence of RM, and to enable improved task performance. The investigated
context was that of oncologic lung FDG PET imaging. Given a realistic blurring kernel of FWHM h (‘true PSF’), we
performed iterative EM including RM using a wide range of ‘modeled PSF’ kernels with varying widths h. In our
simulations, h = 6mm, while h varied from 0 (no RM) to 12mm, thus considering both underestimation and
overestimation of the true PSF. Detection task performance was performed using prewhitened (PWMF) and nonprewhitened
matched filter (NPWMF) observers. It was demonstrated that an underestimated resolution blur (h = 4mm)
enhanced task performance, while slight over-estimation (h = 7mm) also achieved enhanced performance. The latter is
ironically attributed to the presence of ringing artifacts. Nonetheless, in the case of the NPWMF, the increasing intervoxel
correlations with increasing values of h degrade detection task performance, and underestimation of the true PSF
provides the optimal task performance. The proposed framework also achieves significant improvement of
reproducibility, which is critical in quantitative imaging tasks such as treatment response monitoring.
Paper Details
Date Published: 19 March 2014
PDF: 6 pages
Proc. SPIE 9033, Medical Imaging 2014: Physics of Medical Imaging, 903327 (19 March 2014); doi: 10.1117/12.2043973
Published in SPIE Proceedings Vol. 9033:
Medical Imaging 2014: Physics of Medical Imaging
Bruce R. Whiting; Christoph Hoeschen, Editor(s)
PDF: 6 pages
Proc. SPIE 9033, Medical Imaging 2014: Physics of Medical Imaging, 903327 (19 March 2014); doi: 10.1117/12.2043973
Show Author Affiliations
Saeed Ashrafinia, Johns Hopkins Univ. (United States)
Nicolas Karakatsanis, Johns Hopkins Univ. (United States)
Nicolas Karakatsanis, Johns Hopkins Univ. (United States)
Hassan Mohy-ud-Din, Johns Hopkins Univ. (United States)
Arman Rahmim, Johns Hopkins Univ. (United States)
Arman Rahmim, Johns Hopkins Univ. (United States)
Published in SPIE Proceedings Vol. 9033:
Medical Imaging 2014: Physics of Medical Imaging
Bruce R. Whiting; Christoph Hoeschen, Editor(s)
© SPIE. Terms of Use
