Share Email Print

Proceedings Paper

Segmented targeted least squares estimator for material decomposition in multi bin PCXDs
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a fast, noise-efficient, and accurate estimator for material separation using photon-counting x-ray detectors (PCXDs) with multiple energy bin capability. The proposed targeted least squares estimator (TLSE) improves a previously proposed A-Table method by incorporating dynamic weighting that allows noise to be closer to the Cramér- Rao Lower Bound (CRLB) throughout the operating range. We explore Cartesian and average-energy segmentation of the basis material space for TLSE, and show that iso-average-energy contours require fewer segments compared to Cartesian segmentation to achieve similar performance. We compare the iso-average-energy TLSE to other proposed estimators - including the gold standard maximum likelihood estimator (MLE) and the A-Table1 - in terms of variance, bias and computational efficiency. The variance and bias of this estimator between 0 to 6 cm of aluminum and 0 to 50 cm of water is simulated with Monte Carlo methods. Iso-average energy TLSE achieves an average variance within 2% of CRLB, and mean of absolute error of (3.68 ± 0.06) x 10-6 cm. Using the same protocol, MLE showed variance-to- CRLB ratio and average bias of 1.0186 ± 0.0002 and (3.10 ± 0.06) x 10-6 cm, respectively, but was 50 times slower in our simulation. Compared to the A-Table method, TLSE gives a more homogenous variance-to-CRLB profile in the operating region. We show that variance-to-CRLB for TLSE is lower by as much as ~36% than A-Table method in the peripheral region of operation (thin or thick objects). The TLSE is a computationally efficient and fast method for implementing material separation technique in PCXDs, with performance parameters comparable to the MLE.

Paper Details

Date Published: 19 March 2014
PDF: 9 pages
Proc. SPIE 9033, Medical Imaging 2014: Physics of Medical Imaging, 903319 (19 March 2014); doi: 10.1117/12.2043198
Show Author Affiliations
Paurakh L. Rajbhandary, Stanford Univ. (United States)
Scott S. Hsieh, Stanford Univ. (United States)
Norbert J. Pelc, Stanford Univ. (United States)

Published in SPIE Proceedings Vol. 9033:
Medical Imaging 2014: Physics of Medical Imaging
Bruce R. Whiting; Christoph Hoeschen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?