Share Email Print

Proceedings Paper

Compton coincidence volumetric imaging: a new x-ray volumetric imaging modality based on Compton scattering
Author(s): Xiaochao Xu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Compton scattering is a dominant interaction during radiography and computed tomography x-ray imaging. However, the scattered photons are not used for extracting imaging information, but seriously degrade image quality. Here we introduce a new scheme that overcomes most of the problems associated with existing Compton scattering imaging schemes and allows Compton scattered photons to be effectively used for imaging. In our scheme, referred as Compton coincidence volumetric imaging (CCVI), a collimated monoenergetic x-ray beam is directed onto a thin semiconductor detector. A small portion of the photons is Compton scattered by the detector and their energy loss is detected. Some of the scattered photons intersect the imaging object, where they are Compton scattered a second time. The finally scattered photons are recorded by an areal energy resolving detector panel around the object. The two detectors work in coincidence mode. CCVI images the spatial electron density distribution in the imaging object. Similar to PET imaging, the event location can be located within a curve; therefore the imaging reconstruction algorithms are also similar to those of PET. Two statistical iterative imaging reconstruction algorithms are tested. Our study verifies the feasibility of CCVI in imaging acquisition and reconstruction. Various aspects of CCVI are discussed. If successfully implemented, it will offer a great potential for imaging dose reduction compared with x-ray CT. Furthermore, a CCVI modality will have no moving parts, which potentially offers cost reduction and faster imaging speed.

Paper Details

Date Published: 19 March 2014
PDF: 14 pages
Proc. SPIE 9033, Medical Imaging 2014: Physics of Medical Imaging, 90331N (19 March 2014); doi: 10.1117/12.2043122
Show Author Affiliations
Xiaochao Xu, Beaumont Health Systems (United States)

Published in SPIE Proceedings Vol. 9033:
Medical Imaging 2014: Physics of Medical Imaging
Bruce R. Whiting; Christoph Hoeschen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?