Share Email Print

Proceedings Paper

Characterisation of CFRP surface contamination by laser induced fluorescence
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The application of Carbon Fibre Reinforced Polymers (CFRP) in aeronautics has been increasing. The CFRP elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. This research is focused on characterization of surfaces before bonding. In-situ examination of large surface materials, determine the group of methods that are preferred. The analytical methods should be non-destructive, enabling large surface analysis in relatively short time. In this work a spectroscopic method was tested that can be potentially applied for surface analysis. Four cases of surface condition were investigated that can be encountered either in the manufacturing process or during aircraft service. The first case is related to contamination of CFRP surface with hydraulic fluid. This fluid reacts with water forming a phosphoric acid that can etch the CFRP. Second considered case was related to silicone-based release agent contamination. These agents are used during the moulding process of composite panels. Third case involved moisture content in CFRP. Moisture content lowers the adhesion quality and leads to reduced performance of CFRP resulting in reduced performance of the adhesive bond. The last case concentrated on heat damage of CFRP. It was shown that laser induced fluorescence method can be useful for non-destructive evaluation of CFRP surface and some of the investigated contaminants can be easily detected.

Paper Details

Date Published: 9 March 2014
PDF: 9 pages
Proc. SPIE 9064, Health Monitoring of Structural and Biological Systems 2014, 90640E (9 March 2014); doi: 10.1117/12.2042864
Show Author Affiliations
Pawel H. Malinowski, The Szewalski Institute of Fluid-Flow Machinery (Poland)
Miroslaw Sawczak, The Szewalski Institute of Fluid-Flow Machinery (Poland)
Tomasz Wandowski, The Szewalski Institute of Fluid-Flow Machinery (Poland)
Wieslaw M. Ostachowicz, The Szewalski Institute of Fluid-Flow Machinery (Poland)
Warsaw Univ. of Technology (Poland)
Adam Cenian, The Szewalski Institute of Fluid-Flow Machinery (Poland)

Published in SPIE Proceedings Vol. 9064:
Health Monitoring of Structural and Biological Systems 2014
Tribikram Kundu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?