
Proceedings Paper
Electrical characterization of semiconductor nanowires by scanning tunneling microscopyFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
In order to understand the structural and electronic properties of semiconductor nanowires, scanning tunneling microscopy is an appealing technique that can supplement transmission electron microscopies and conventional electrical characterization techniques. It is able to probe the surface of semiconductor materials at the atomic scale and can be successfully applied to study the nanofaceting morphology, the atomic structure and the surface composition of oxide-free nanowire sidewalls. Based on the advantages provided by the unique geometry of semiconductor nanowires for a low-cost and efficient integration into nanoscale devices, additional characterization schemes performed with multiple probe scanning tunneling microscopy are also presented to get a deeper understanding of their transport properties.
Paper Details
Date Published: 19 February 2014
PDF: 10 pages
Proc. SPIE 8996, Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XI, 89960E (19 February 2014); doi: 10.1117/12.2042767
Published in SPIE Proceedings Vol. 8996:
Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XI
Diana L. Huffaker; Frank Szmulowicz; Holger Eisele, Editor(s)
PDF: 10 pages
Proc. SPIE 8996, Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XI, 89960E (19 February 2014); doi: 10.1117/12.2042767
Show Author Affiliations
Corentin Durand, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
Oak Ridge National Lab. (United States)
Pierre Capoid, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
M. Berthe, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
Tao Xu, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
Shanghai Univ. (China)
Oak Ridge National Lab. (United States)
Pierre Capoid, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
M. Berthe, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
Tao Xu, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
Shanghai Univ. (China)
Jean-Philippe Nys, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
Renaud Leturcq, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
Ph. Caroff, Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS (France)
The Australian National Univ. (Australia)
Bruno Grandidier, Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS (France)
Renaud Leturcq, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS (France)
Ph. Caroff, Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS (France)
The Australian National Univ. (Australia)
Bruno Grandidier, Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS (France)
Published in SPIE Proceedings Vol. 8996:
Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XI
Diana L. Huffaker; Frank Szmulowicz; Holger Eisele, Editor(s)
© SPIE. Terms of Use
