
Proceedings Paper
Integrated optical waveguide and nanoparticle based label-free molecular biosensing conceptsFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
We present our developments on integrated optical waveguide based as well as on magnetic nanoparticle based label-free
biosensor concepts. With respect to integrated optical waveguide devices, evanescent wave sensing by means of Mach-
Zehnder interferometers are used as biosensing components. We describe three different approaches: a) silicon photonic
wire waveguides enabling on-chip wavelength division multiplexing, b) utilization of slow light in silicon photonic
crystal defect waveguides operated in the 1.3 μm wavelength regime, and c) silicon nitride photonics wire waveguide
devices compatible with on-chip photodiode integration operated in the 0.85 μm wavelength regime. The nanoparticle
based approach relies on a plasmon-optical detection of the hydrodynamic properties of magnetic-core/gold-shell
nanorods immersed in the sample solution. The hybrid nanorods are rotated within an externally applied magnetic field
and their rotation optically monitored. When target molecules bind to the surfaces of the nanorods their hydrodynamic
volumes increase, which directly translates into a change of the optical signal. This approach possesses the potential to
enable real-time measurements with only minimal sample preparation requirements, thus presenting a promising point-of-
care diagnostic system.
Paper Details
Date Published: 18 March 2014
PDF: 10 pages
Proc. SPIE 8933, Frontiers in Biological Detection: From Nanosensors to Systems VI, 893305 (18 March 2014); doi: 10.1117/12.2041661
Published in SPIE Proceedings Vol. 8933:
Frontiers in Biological Detection: From Nanosensors to Systems VI
Benjamin L. Miller; Philippe M. Fauchet; Brian T. Cunningham, Editor(s)
PDF: 10 pages
Proc. SPIE 8933, Frontiers in Biological Detection: From Nanosensors to Systems VI, 893305 (18 March 2014); doi: 10.1117/12.2041661
Show Author Affiliations
Rainer Hainberger, AIT Austrian Institute of Technology GmbH (Austria)
Paul Muellner, AIT Austrian Institute of Technology GmbH (Austria)
Eva Melnik, AIT Austrian Institute of Technology GmbH (Austria)
Markus Wellenzohn, AIT Austrian Institute of Technology GmbH (Austria)
Roman Bruck, AIT Austrian Institute of Technology GmbH (Austria)
Joerg Schotter, AIT Austrian Institute of Technology GmbH (Austria)
Stefan Schrittwieser, AIT Austrian Institute of Technology GmbH (Austria)
Michael Waldow, AMO GmbH (Germany)
Paul Muellner, AIT Austrian Institute of Technology GmbH (Austria)
Eva Melnik, AIT Austrian Institute of Technology GmbH (Austria)
Markus Wellenzohn, AIT Austrian Institute of Technology GmbH (Austria)
Roman Bruck, AIT Austrian Institute of Technology GmbH (Austria)
Joerg Schotter, AIT Austrian Institute of Technology GmbH (Austria)
Stefan Schrittwieser, AIT Austrian Institute of Technology GmbH (Austria)
Michael Waldow, AMO GmbH (Germany)
Thorsten Wahlbrink, AMO GmbH (Germany)
Guenther Koppitsch, ams AG (Austria)
Franz Schrank, ams AG (Austria)
Katerina Soulantica, LPCNO, CNRS, Univ. de Toulouse (France)
Sergio Lentijo, LPCNO, CNRS, Univ. de Toulouse (France)
Beatriz Pelaz, Philipps-Univ. Marburg (Germany)
Wolfgang Parak, Philipps-Univ. Marburg (Germany)
Guenther Koppitsch, ams AG (Austria)
Franz Schrank, ams AG (Austria)
Katerina Soulantica, LPCNO, CNRS, Univ. de Toulouse (France)
Sergio Lentijo, LPCNO, CNRS, Univ. de Toulouse (France)
Beatriz Pelaz, Philipps-Univ. Marburg (Germany)
Wolfgang Parak, Philipps-Univ. Marburg (Germany)
Published in SPIE Proceedings Vol. 8933:
Frontiers in Biological Detection: From Nanosensors to Systems VI
Benjamin L. Miller; Philippe M. Fauchet; Brian T. Cunningham, Editor(s)
© SPIE. Terms of Use
