Share Email Print
cover

Proceedings Paper

Feasibility and performance study for a space-borne 1645nm OPO for French-German satellite mission MERLIN
Author(s): Marie J. Livrozet; Florian Elsen; Jochen Wüppen; Jens Löhring; Christian Büdenbender; Andreas Fix; Bernd Jungbluth; Dieter Hoffmann
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a theoretical and experimental analysis of a pulsed 1645 nm optical parametric oscillator (OPO) conducted to prove the feasibility of such a device for a spaceborne laser transmitter in an integrated path differential absorption (IPDA) lidar system. The investigation is part of the French-German satellite mission MERLIN (Methane Remote Sensing Lidar Mission). As an effective greenhouse gas, methane plays an important role for the global climate. The architecture of the OPO is based on a conceptual design developed by DLR, consisting of two KTA crystals in a four-mirror-cavity. One of the cavity mirrors is piezo-driven to provide single frequency operation of the OPO. Using numerical simulations, we studied the performance and alignment tolerances of such a setup with KTP and KTA and investigated means to optimize the optical design by increasing the efficiency and decreasing the fluence on the optical components. For the experimental testing of the OPO, we used the INNOSlab-based ESA pre-development model ATLAS as pump laser at 1064 nm. At a pulse frequency of 25 Hz this MOPA delivers a pump energy up to 45 mJ with a beam quality factor of about M² = 1.3. With KTP as nonlinear crystal the OPO obtained 9.2 mJ pulse energy at 1645 nm from 31.5 mJ of the pump and a pump pulse duration of 42 ns. This corresponds to an optical/optical efficiency of 29%. After the pump pulse was reduced to 24 ns a similar OPO performance could be obtained by adapting the pump beam radius.

Paper Details

Date Published: 28 February 2014
PDF: 7 pages
Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices, 89590G (28 February 2014); doi: 10.1117/12.2041422
Show Author Affiliations
Marie J. Livrozet, Fraunhofer-Institut für Lasertechnik (Germany)
Florian Elsen, Fraunhofer-Institut für Lasertechnik (Germany)
Jochen Wüppen, Fraunhofer-Institut für Lasertechnik (Germany)
Jens Löhring, Fraunhofer-Institut für Lasertechnik (Germany)
Christian Büdenbender, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Andreas Fix, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Bernd Jungbluth, Fraunhofer-Institut für Lasertechnik (Germany)
Dieter Hoffmann, Fraunhofer-Institut für Lasertechnik (Germany)


Published in SPIE Proceedings Vol. 8959:
Solid State Lasers XXIII: Technology and Devices
W. Andrew Clarkson; Ramesh K. Shori, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray