Share Email Print

Proceedings Paper

High-speed flow cytometric analysis of nanoparticle targeting to rare leukemic stem cells in peripheral human blood: preliminary in-vitro studies
Author(s): Christy L. Cooper; James F. Leary
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Leukemic cancer stem cells are both stem-like and leukemic-like. This complicates their detection as rare circulating tumor cells in peripheral blood of leukemia patients. The leukemic stem cells are also highly resistant to standard chemotherapeutic regimens so new therapeutic strategies need to be designed to kill the leukemic stem cells without killing normal stem cells. In these initial studies we have designed an antibody-targeted and fluorescent (Cy5.5) nanoparticle for targeting these leukemic stem cells and then introducing new strategies for killing them. Multicolor flow cytometric analyses were performed on a BD FACS Aria III. Human leukemic stem cell-like cell line RS4;11 (with putative immunophenotype CD123+/CD24+/CD38-/CD10-/Flt-3-) was used as a model human leukemic stem cell systems and were spiked into normal human peripheral blood cells containing normal blood stem-progenitor cells (immunophenotype CD123-/CD34+/CD38-) and Cy5.5-labeled nanoparticles with targeting molecule anti-CD123 antibody. An irrelevant antibody (CD71) which should not bind to any live leukemic stem cell or normal stem cell (binds erythrocytes) was used as a way of distinguishing between true-positive live and false-positive damaged/dead cells, the latter occurring at much higher frequencies than the very rare (e.g. 0.001 to 0.0001 percent frequency true leukemic stem cells). These studies are designed to measure the targeting sensitivity and specificity of the fluorescent nanoparticles to the putative rare leukemic stem cells with the eventual design to use the nanoparticles to direct killing therapeutic doses to the leukemic stem cells but not to the normal stem-progenitor cells.

Paper Details

Date Published: 4 March 2014
PDF: 10 pages
Proc. SPIE 8947, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, 894711 (4 March 2014); doi: 10.1117/12.2040976
Show Author Affiliations
Christy L. Cooper, Purdue Univ. (United States)
James F. Leary, Purdue Univ. (United States)

Published in SPIE Proceedings Vol. 8947:
Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII
Daniel L. Farkas; Dan V. Nicolau; Robert C. Leif, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?