Share Email Print

Proceedings Paper

Direct transfer of solar radiation to high temperature applications
Author(s): Maryam Rahou; John Andrews; Gary Rosengarten
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper reviews the different methods of directly transferring solar radiation from concentrated solar collectors to medium to high temperature thermal absorbers, at temperatures ranging from 100 to 400°. These methods are divided into four main categories associated with the radiation transfer medium: optical fibres, photonic crystal fibres, metal waveguides and light guides. The reviewed methods are novel compared to most rooftop solar concentrators that have a receiver and a thermal storage unit coupled by heat transfer fluids. Bundled optical fibres have the capability of transferring concentrated solar energy across the full wavelength spectrum with the maximum optical efficiency. In this study two different types of optical bundle, including hard polymer cladding silica (HPCS) and polymer clad silica (PCS) fibres are introduced which offer a broad spectrum transmission range from 300 to 1700 nm, low levels of losses through attenuation and the best resistance to heating. These fibres are able to transmit about 94% of the solar radiation over a distance of 10 m. The main parameters that determine the overall efficiency of the system are the concentration ratio, the acceptance angle of the fibres, and the matching of the diameter of the focus spot of the concentrator and the internal diameter of the fibre. In order to maximize the coupling efficiency of the system, higher levels of concentration are required which can be achieved through lenses or other non-imaging concentrators. However, these additional components add to the cost and complexity of the system. To avoid this problem we use tapered bundles of optical fibres that enhance the coupling efficiency by increasing the acceptance angle and consequently the coupling efficiency of the system.

Paper Details

Date Published: 7 December 2013
PDF: 10 pages
Proc. SPIE 8923, Micro/Nano Materials, Devices, and Systems, 89230A (7 December 2013); doi: 10.1117/12.2033795
Show Author Affiliations
Maryam Rahou, RMIT Univ. (Australia)
John Andrews, RMIT Univ. (Australia)
Gary Rosengarten, RMIT Univ. (Australia)

Published in SPIE Proceedings Vol. 8923:
Micro/Nano Materials, Devices, and Systems
James Friend; H. Hoe Tan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?