Share Email Print

Proceedings Paper

The study of the thermal imaging law on several objects in winter environment
Author(s): Xuan-yu Wang; Min-hui Pang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Some thermal imaging experiments have been done about a building with a door made of iron, copperplate and aluminum flake, several trees, marbles, a glass window and a concrete wall under different conditions in a winter day while the environmental temperature and relative humidity are simultaneously measured by an electronic sensor. The experimental results show that the thermal imaging temperatures of the targets are related to the category of materials, and presenting some laws with the environment temperature changing. All of the thermal imaging temperature of the targets obviously varies with the atmospheric environment temperature by the large temperature difference. The changes of the surface temperature of metals are more obviously than nonmetals. The thermal imaging temperature of the door made of iron is more easily affected by the atmospheric environment temperature than copperplate while aluminum flake is more difficultly affected than copperplate under the same condition. The temperature of an ordinary concrete wall is obviously higher than the one painted by oil paint. Under the same condition, the changes of glasses are the most in all of the nonmetal targets.

Paper Details

Date Published: 11 September 2013
PDF: 6 pages
Proc. SPIE 8907, International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications, 89071D (11 September 2013); doi: 10.1117/12.2032365
Show Author Affiliations
Xuan-yu Wang, Institute of Chemical Defense (China)
Min-hui Pang, Institute of Chemical Defense (China)

Published in SPIE Proceedings Vol. 8907:
International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications
Haimei Gong; Zelin Shi; Qian Chen; Jin Lu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?