Share Email Print

Proceedings Paper

Plasmon enhanced single-photon detection
Author(s): Gábor Szekeres; András Szenes; Mária Csete
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Novel infrared superconducting nanowire single-photon detectors (SNSPD) were designed, which comprise a meandered pattern of niobium-nitride (NbN) stripes and different integrated plasmonic structures on silica substrate. To enhance absorptance of 1550 nm wavelength p-polarized light, patterns with p=264 nm periodicity were investigated, while to enhance detection efficiency, patterns with P=792.5 nm periodicity commensurate with the wavelength of surface plasmon polaritons at silica-gold interface were also designed. In OC-SNSPDs integrated with ~quarter-photonicwavelength nano-optical cavity closed by a gold reflector, the highest 63/27 % absorptance was attained in p/P-pitch design at perpendicular incidence onto NbN patterns in P-orientation corresponding to incidence plane parallel to the stripes, due to the E-field antinode at the NbN-silica interface. In NCAI-SNSPDs, where each NbN stripe is located at the entrance of a quarter-plasmon-wavelength MIM nano-cavity, enhanced 85.1/34 % absorptance is attainable in p/Ppitch design at perpendicular incidence in S-orientation, when the incidence plane is perpendicular to the integrated pattern, due to collective resonances. The maximal 95.3/70.3 % absorptances are attained at large tilting corresponding to plasmonic Brewster angles via ultra-broadband tunneling. In NCDAI-SNSPDs the longer vertical gold segments with P-pitch, which can be embedded into the silica substrate via two-step lithography, enable to attain large absorptance at small polar angles in S-orientation, due to efficient grating-coupling phenomenon. The highest 92.7/75 % absorptances are attained at 19.85°/19.35° polar angles in p/P-pitch design. P-pitch NCDAI-SNSPD supporting coupled surface waves capable of ensuring synchronous E-field enhancement below the NbN stripes is proposed for detection efficiency maximization in specific spectral-bands.

Paper Details

Date Published: 11 September 2013
PDF: 9 pages
Proc. SPIE 8809, Plasmonics: Metallic Nanostructures and Their Optical Properties XI, 88092Y (11 September 2013);
Show Author Affiliations
Gábor Szekeres, Univ. of Szeged (Hungary)
András Szenes, Univ. of Szeged (Hungary)
Mária Csete, Univ. of Szeged (Hungary)

Published in SPIE Proceedings Vol. 8809:
Plasmonics: Metallic Nanostructures and Their Optical Properties XI
Mark I. Stockman, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?