Share Email Print

Proceedings Paper

Optical trapping of anisotropic nanocylinder
Author(s): Paul B. Bareil; Yunlong Sheng
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The T-matrix method with the Vector Spherical Wave Function (VSWF) expansions represents some difficulties for computing optical scattering of anisotropic particles. As the divergence of the electric field is nonzero in the anisotropic medium and the VSWFs do not satisfy the anisotropic wave equations one questioned whether the VSWFs are still a suitable basis in the anisotropic medium. We made a systematic and careful review on the vector basis functions and the VSWFs. We found that a field vector in Euclidean space can be decomposed to triplet vectors {L, M, N}, which as non-coplanar. Especially, the vector L is designed to represent non-zero divergence component of the vector solution, so that the VSWF basis is sufficiently general to represent the solutions of the anisotropic wave equation. The mathematical proof can be that when the anisotropic wave equations is solved in the Fourier space, the solution is expanded in the basis of the plan waves with angular spectrum amplitude distributions. The plane waves constitute an orthogonal and complete set for the anisotropic solutions. Furthermore, the plane waves are expanded into the VSWF basis. These two-step expansions are equivalent to the one-step direct expansion of the anisotropic solution to the VSWF basis. We used direct VSWF expansion, along with the point-matching method in the T-matrix, and applied the boundary condition to the normal components displacement field in order to compute the stress and the related forces and torques and to show the mechanism of the optical trap of the anisotropic nano-cylinders.

Paper Details

Date Published: 12 September 2013
PDF: 8 pages
Proc. SPIE 8810, Optical Trapping and Optical Micromanipulation X, 88102V (12 September 2013);
Show Author Affiliations
Paul B. Bareil, Univ. Laval (Canada)
Yunlong Sheng, Univ. Laval (Canada)

Published in SPIE Proceedings Vol. 8810:
Optical Trapping and Optical Micromanipulation X
Kishan Dholakia; Gabriel C. Spalding, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?