Share Email Print

Proceedings Paper

Resonant energy absorption and the CTF hypothesis
Author(s): Michael Ambroselli; Chandra Roychoudhuri
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Antennas in resonant circuits can present an effective energy absorption cross-section much larger than its physical dimensions to the impinging EM waves. Similarly, atoms can absorb energy from fields with energy densities so low that the atom must have an effective interaction cross-sectional diameter on the order of tens of microns. It appears that resonant energy absorption exhibits a sort of "suction" effect by the absorbing dipole, or a "pushing" effect by the field, or a combination of both. This allows the field energy to converge from a larger volume into a smaller region. We will argue that this effect may actually correspond to the field preferentially directing energy into such resonant systems, and discuss how this provides further evidence for the utility of our proposition of a universal, complex tension field (CTF). We have proposed that CTF can support propagating field gradients, like EM waves, as well as resonant, localized and self-looped oscillations representing various particles. Different gradients in the CTF, generated by different kinds of particle-oscillations, represent the various forces experienced by particles within each others’ physical domain. Even time emerges as a secondary property. Thus, the CTF postulate provides an excellent platform to re-invigorate attempts to build a unified field theory.

Paper Details

Date Published: 1 October 2013
PDF: 6 pages
Proc. SPIE 8832, The Nature of Light: What are Photons? V, 88320T (1 October 2013); doi: 10.1117/12.2024126
Show Author Affiliations
Michael Ambroselli, Univ. of Connecticut (United States)
Chandra Roychoudhuri, Univ. of Connecticut (United States)

Published in SPIE Proceedings Vol. 8832:
The Nature of Light: What are Photons? V
Chandrasekhar Roychoudhuri; Al F. Kracklauer; Hans De Raedt, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?