Share Email Print

Proceedings Paper

Comparison of CPU and GPU based coding on low-complexity algorithms for display signals
Author(s): Thomas Richter; Sven Simon
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Graphics Processing Units (GPUs) are freely programmable massively parallel general purpose processing units and thus offer the opportunity to off-load heavy computations from the CPU to the GPU. One application for GPU programming is image compression, where the massively parallel nature of GPUs promises high speed benefits. This article analyzes the predicaments of data-parallel image coding on the example of two high-throughput coding algorithms. The codecs discussed here were designed to answer a call from the Video Electronics Standards Association (VESA), and require only minimal buffering at encoder and decoder side while avoiding any pixel-based feedback loops limiting the operating frequency of hardware implementations. Comparing CPU and GPU implementations of the codes show that GPU based codes are usually not considerably faster, or perform only with less than ideal rate-distortion performance. Analyzing the details of this result provides theoretical evidence that for any coding engine either parts of the entropy coding and bit-stream build-up must remain serial, or rate-distortion penalties must be paid when offloading all computations on the GPU.

Paper Details

Date Published: 26 September 2013
PDF: 14 pages
Proc. SPIE 8856, Applications of Digital Image Processing XXXVI, 885615 (26 September 2013); doi: 10.1117/12.2022398
Show Author Affiliations
Thomas Richter, Univ. Stuttgart (Germany)
Sven Simon, Univ. Stuttgart (Germany)

Published in SPIE Proceedings Vol. 8856:
Applications of Digital Image Processing XXXVI
Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?