Share Email Print

Proceedings Paper

Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions
Author(s): John Apostolos; William Mouyos; Judy Feng; Walter Chase
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10’s of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

Paper Details

Date Published: 7 June 2013
PDF: 10 pages
Proc. SPIE 8709, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, 87090Q (7 June 2013); doi: 10.1117/12.2021508
Show Author Affiliations
John Apostolos, AMI Research and Development, LLC (United States)
William Mouyos, AMI Research and Development, LLC (United States)
Judy Feng, AMI Research and Development, LLC (United States)
Walter Chase, AMI Research and Development, LLC (United States)

Published in SPIE Proceedings Vol. 8709:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII
J. Thomas Broach; Jason C. Isaacs, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?