Share Email Print

Proceedings Paper

Improvements of satellite SST retrievals at full swath
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The ultimate goal of the prediction of Sea Surface Temperature (SST) from satellite data is to attain an accuracy of 0.3°K or better when compared to floating or drifting buoys located around the globe. Current daytime SST algorithms are able to routinely achieve an accuracy of 0.5°K for satellite zenith angles up to 53°. The full scan swath of VIIRS (Visible Infrared Imaging Radiometer Suite) results in satellite zenith angles up to 70°, so that successful retrieval of SST from VIIRS at these higher angles would greatly increase global coverage. However, the accuracy of present SST algorithms steadily degrades to nearly 0.7°K as the satellite zenith angle reaches 70°, due mostly to the effects of increased atmospheric path length. We investigated the use of Tfield, a gap-free first guess temperature field used in NLSST, as a separate predictor to the MCSST algorithm in order to clearly evaluate its effects. Results of this new algorithm, TfieldSST, showed how its rms error is heavily dependent on the aggressiveness of the pre-filtering of buoy matchup data with respect to Tfield. It also illustrated the importance of fully exploiting the a priori satellite-only information contained in Tfield, presently tamed in the NLSST algorithm due to the fact that it shows up as a multiplier to another predictor. Preliminary results show that SST retrievals using TfieldSST could be obtained using the full satellite swath with a 30% improvement in accuracy at large satellite zenith angles and that a fairly aggressive pre-filtering scheme could help attain the desired accuracy of 0.3°K or better using over 75% of the buoy matchup data.

Paper Details

Date Published: 3 June 2013
PDF: 21 pages
Proc. SPIE 8724, Ocean Sensing and Monitoring V, 87240R (3 June 2013); doi: 10.1117/12.2018399
Show Author Affiliations
Walton McBride, U.S. Naval Research Lab. (United States)
Robert Arnone, The Univ. of Southern Mississippi (United States)
Jean-François Cayula, QinetiQ North America (United States)

Published in SPIE Proceedings Vol. 8724:
Ocean Sensing and Monitoring V
Weilin W. Hou; Robert A. Arnone, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?