Share Email Print

Proceedings Paper

High-fidelity modeling and simulation for wideband receiving system development
Author(s): Chen Wu; Anne Young
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Research experience has shown that it is expensive to design, build and test a RF/microwave system that is comprised of various RF/microwave components. In order to mitigate the problem, High-Fidelity Modeling and Simulation (HFM&S) is a practical approach that includes high-fidelity behavioural model (HFBM) of the receiving system and scenarios embedded with different Concept of Operations (CONOPS). HFM&S is also an essential way to develop receiving system specifications that can be used for system validation and verification. This paper presents the HFBM of a wideband digital receiver using Matlab/Simulink® and the RF Toolbox™/SimRF™, and the use of the model to build a multi-channel receiving system that has a linear antenna array. The receiving system is installed on an UAV to intercept a ground-based emitter signal in a scenario that is built in Systems Tool Kit®. Through the design and build of the UAV receiver and its deployment in a scenario, this paper demonstrates the following: what is meant by HFBM of a system and how it can simulate real hardware; how signal integrity in the HFM&S can be and should be retained; why amplitude and phase are important for signal waveform level M&S; why the modern high performance computing technology should be used for signal waveform level M&S; an

Paper Details

Date Published: 29 May 2013
PDF: 14 pages
Proc. SPIE 8752, Modeling and Simulation for Defense Systems and Applications VIII, 875202 (29 May 2013); doi: 10.1117/12.2018295
Show Author Affiliations
Chen Wu, Defence Research and Development Canada, Ottawa (Canada)
Anne Young, Defence Research and Development Canada, Ottawa (Canada)

Published in SPIE Proceedings Vol. 8752:
Modeling and Simulation for Defense Systems and Applications VIII
Eric J. Kelmelis, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?