Share Email Print
cover

Proceedings Paper

Precise RFID localization in impaired environment through sparse signal recovery
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Radio frequency identification (RFID) is a rapidly developing wireless communication technology for electronically identifying, locating, and tracking products, assets, and personnel. RFID has become one of the most important means to construct real-time locating systems (RTLS) that track and identify the location of objects in real time using simple, inexpensive tags and readers. The applicability and usefulness of RTLS techniques depend on their achievable accuracy. In particular, when multilateration-based localization techniques are exploited, the achievable accuracy primarily relies on the precision of the range estimates between a reader and the tags. Such range information can be obtained by using the received signal strength indicator (RSSI) and/or the phase difference of arrival (PDOA). In both cases, however, the accuracy is significantly compromised when the operation environment is impaired. In particular, multipath propagation significantly affects the measurement accuracy of both RSSI and phase information. In addition, because RFID systems are typically operated in short distances, RSSI and phase measurements are also coupled with the reader and tag antenna patterns, making accurate RFID localization very complicated and challenging. In this paper, we develop new methods to localize RFID tags or readers by exploiting sparse signal recovery techniques. The proposed method allows the channel environment and antenna patterns to be taken into account and be properly compensated at a low computational cost. As such, the proposed technique yields superior performance in challenging operation environments with the above-mentioned impairments.

Paper Details

Date Published: 28 May 2013
PDF: 10 pages
Proc. SPIE 8753, Wireless Sensing, Localization, and Processing VIII, 87530H (28 May 2013); doi: 10.1117/12.2018144
Show Author Affiliations
Saurav Subedi, Villanova Univ. (United States)
Yimin D. Zhang, Villanova Univ. (United States)
Moeness G. Amin, Villanova Univ. (United States)


Published in SPIE Proceedings Vol. 8753:
Wireless Sensing, Localization, and Processing VIII
Sohail A. Dianat; Michael David Zoltowski, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray