
Proceedings Paper
Image change detection via ensemble learningFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
The concept of geographic change detection is relevant in many areas. Changes in geography can reveal much information about a particular location. For example, analysis of changes in geography can identify regions of population growth, change in land use, and potential environmental disturbance. A common way to perform change detection is to use a simple method such as differencing to detect regions of change. Though these techniques are simple, often the application of these techniques is very limited. Recently, use of machine learning methods such as neural networks for change detection has been explored with great success.
In this work, we explore the use of ensemble learning methodologies for detecting changes in bitemporal synthetic aperture radar (SAR) images. Ensemble learning uses a collection of weak machine learning classifiers to create a stronger classifier which has higher accuracy than the individual classifiers in the ensemble. The strength of the ensemble lies in the fact that the individual classifiers in the ensemble create a "mixture of experts" in which the final classification made by the ensemble classifier is calculated from the outputs of the individual classifiers. Our methodology leverages this aspect of ensemble learning by training collections of weak decision tree based classifiers to identify regions of change in SAR images collected of a region in the Staten Island, New York area during Hurricane Sandy. Preliminary studies show that the ensemble method has approximately
11.5% higher change detection accuracy than an individual classifier.
Paper Details
Date Published: 18 May 2013
PDF: 7 pages
Proc. SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, 874305 (18 May 2013); doi: 10.1117/12.2017954
Published in SPIE Proceedings Vol. 8743:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX
Sylvia S. Shen; Paul E. Lewis, Editor(s)
PDF: 7 pages
Proc. SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, 874305 (18 May 2013); doi: 10.1117/12.2017954
Show Author Affiliations
Benjamin W. Martin, The Univ. of Tennessee Knoxville (United States)
Ranga R. Vatsavai, Oak Ridge National Lab. (United States)
Published in SPIE Proceedings Vol. 8743:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX
Sylvia S. Shen; Paul E. Lewis, Editor(s)
© SPIE. Terms of Use
