Share Email Print

Proceedings Paper

Design and fabrication of high-throughput application-specific microfluidic devices for studying single-cell responses to extracellular perturbations
Author(s): Amin A. Banaeiyan; Doryaneh Ahmadpour; Caroline B. Adiels; Mattias Goksör
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Single cell analysis techniques provide a unique opportunity of determining the intercellular heterogeneity in a cell population, which due to genotype variations and different physiological states of the cells i.e. size, shape and age, cannot be retrieved from averaged cell population values. In order to obtain high-value quantitative data from single-cell experiments it is important to have experimental platforms enabling high-throughput studies. Here, we present a microfluidic chip, which is capable of capturing individual cells in suspension inside separate traps. The device consists of three adjacent microchannels with separate inlets and outlets, laterally connected through the V-shaped traps. Vshaped traps, with openings smaller than the size of a single cell, are fabricated in the middle (main) channel perpendicular to the flow direction. Cells are guided into the wells by streamlines of the flows and are kept still at the bottom of the traps. Cells can then be exposed to extracellular stimuli either in the main or the side channels. Microchannels and traps of different sizes can be fabricated in polydimethylsiloxane (PDMS), offering the possibility of independent studies on cellular responses with different cell types and different extracellular environmental changes. We believe that this versatile high-throughput cell trapping approach will contribute to further development of the current knowledge and information acquired from single-cell studies and provide valuable statistical experimental data required for systems biology.

Paper Details

Date Published: 28 May 2013
PDF: 13 pages
Proc. SPIE 8765, Bio-MEMS and Medical Microdevices, 87650K (28 May 2013); doi: 10.1117/12.2017301
Show Author Affiliations
Amin A. Banaeiyan, Univ. of Gothenburg (Sweden)
Doryaneh Ahmadpour, Univ. of Gothenburg (Sweden)
Caroline B. Adiels, Univ. of Gothenburg (Sweden)
Mattias Goksör, Univ. of Gothenburg (Sweden)

Published in SPIE Proceedings Vol. 8765:
Bio-MEMS and Medical Microdevices
Angeliki Tserepi; Manuel Delgado-Restituto; Eleni Makarona, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?